Maschinelles lernen in der Produktion: Herausforderungen und Chancen
KI und maschinelles Lernen werden in der Industrie zunehmend relevanter. Die künstliche Intelligenz erlaubt eine Vielzahl an Möglichkeiten, die zu effizienten Prozessen in der industriellen Praxis führen. Roboter, die vollkommen autonom funktionieren oder die prädiktive Instandhaltung von Maschinen sind nur einige Beispiele, die nicht zu vernachlässigen sind, um zukünftig wettbewerbsfähig zu bleiben. Im nachfolgenden Beitrag erfährst Du, weshalb die Einführung der künstlichen Intelligenz im maschinellen Lernen für Deinen Bereich oder Dein Unternehmen langfristig so wichtig sind.
Definition – Was ist Deep Learning?
Unter dem Begriff Deep Learning (DL) versteht man eine spezielle Art der allgemeinen Informationsverarbeitung. Parallel hierzu handelt es sich um einen Teilbereich des Machine Learnings. Das DL verwendet neuronale Netze, um bestehende Datensätze zu analysieren. Alle hierfür verwendeten künstlichen neuronalen Netzwerke sind analog zu den biologischen neuronalen Netzwerken des menschlichen Gehirns entstanden. Die Netzwerke nehmen zunächst etwas wahr, es wird hierüber nachgedacht, um dann zu einer Schlussfolgerung zu gelangen. Große Datenberge können durch die hierdurch entstandene künstliche Intelligenz wesentlich schneller untersucht und wahrgenommen werden, als Dein menschliches Gehirn diese Aufgaben bewältigen könnte. Das Deep Learning stellt laut Definition rein technologisch die Basis für die enormen Fortschritte der Künstlichen Intelligenz dar.
Was ist Machine Learning?
Das Machine Learning nimmt in allen Bereichen des täglichen Lebens zunehmend mehr Relevanz ein. Maschinelle Lernmodelle basieren hierbei auf unterschiedliche Algorithmen, die in der angewandten Technik zwingend berücksichtigt werden müssen. Wie Maschinen lernen, erfolgt immer in Abhängigkeit der zugrundeliegenden Datenart und welches gewünschte Ergebnis hiermit am Ende erzielt werden soll.
Es wird zwischen folgenden Lernmodellen im Bereich der Klassifikation unterschieden:
Im Rahmen dieser Modelle werden zudem differenzierende algorithmische Techniken unterschieden, die sich in den Datensätzen und den angestrebten Ergebnissen unterscheiden. Algorithmen des maschinellen Lernens orientieren sich grundsätzlich daran, Daten und Dinge zu klassifizieren, eine Musteridentifikation vorzunehmen sowie eine klare und nachvollziehbare Entscheidung zu generieren.
Das Maschine Learning versteht sich ebenso laut Definition als eine Kombination von Algorithmen, die es ermöglichen, komplexe und nicht im Vorfeld nachvollziehbare Daten mit maximaler Genauigkeit festzulegen.
Maschinelles Lernen in der Produktion
International in beinahe allen Lebensbereichen steigt die individuelle Bedeutung von maschinellem Lernen enorm an. Aufgrund einiger Maschine-Learning-Tools ist es beispielsweise möglich, die vorteilhaften Aspekte je nach gewähltem Modell und Klassifikation in die produzierenden Firmen zu integrieren. Was ist Maschine Learning genau in der Praxis und, wieso ist es so vorteilhaft das maschinelle Lernen sowie die künstliche Intelligenz in der Produktion zu implementieren? Dieser Sachverhalt wird im kommenden Abschnitt auch anhand von einzelnen Anwendungsbeispielen kurz näher dargelegt.
Maschinen Lernen in der unternehmerischen Praxis
Das maschinelle Lernen in der Produktion wird zunehmend zum Erfolgsfaktor in der Wirtschaft. Mit einer immer weiterführenden Technologisierung ist dies ein nicht zu unterschätzender Erfolgsfaktor, der durch einen verwendeten Algorithmus eigenständig lernen kann. Eingesparte Ressourcen sowie ein komplexeres Maschine-Learning fallen direkt in diese Mehrwertbereiche. Mit der Industrie 5.0 wandelt sich auch die Produktion maßgeblich. Hierbei steht das maschinelle Lernen sowie die Künstliche Intelligenz im Vordergrund um den „menschlicheren Arbeitsplatz“. Hierbei ist das Lernen der Maschinen zur Unterstützung des Menschen an seinem Arbeitsplatz ein maßgeblicher Faktor. In der Produktion geht es hierbei nicht nur um Steigerung der Effizienz sondern auch darum die Menschen bei deiner Arbeit zu unterstützen.
Künstliche Intelligenz in der Produktion – Vorteile
Die künstliche Intelligenz in der Produktion bietet Mehrwerte und Erfolgsfaktoren, die dringend zu berücksichtigen sind, um langfristig auch in der Zukunft wettbewerbsfähig zu bleiben. Die Vision, dass Maschinen lernen, ist keine Zukunftsvision, sondern vielerorts bereits gelebte Praxis in der Industrie und Produktion. Auch Technologieunternehmen wie SAP nutzen diese Technologien bereits gewinnbringend.
Es wird hierbei zwischen dem sogenannten Future-Proof, der Effizienz und der sogenannten Forcierung der Konzentration schwerpunktmäßig unterschieden.
Future-Proof beschreibt laut Definition das Maschine Learning im Grundsätzlichen und die Notwendigkeit aktiv in diese Technologie als Unternehmen zu investieren. Es ist zu erwarten, dass das Maschine Learning als Kosteneffizienzfaktor in der Zukunft noch einen viel größeren Erfolgsfaktor einnehmen wird. Unternehmen sollten folglich besser noch heute in diese Arten der Technologie investieren, auch um eine prädiktive Instandhaltung sicherzustellen, um beispielsweise hierdurch Kosten einzusparen.
Aufgrund der gewählten Methode sowie der Klassifikation von zugrundeliegenden Datensätzen ist es maschinell möglich, den eingesetzten Input in einen Prozess möglichst effizient zu gestalten. Hierdurch ist eine Maximierung der externen und internen Unternehmensprozesse zu erwarten. SAP verwendet beispielsweise aktiv diesen Ansatz in den ERP-Programmen.
Das maschinelle Lernen kann repetitive Aufgabenbestandteile je nach Modell und genutzten Methoden eigenständig übernehmen. Hierdurch können sich Unternehmen auf andere Dinge konzentrieren und ihren Kernaufgaben nachgehen.
Unterscheidungspunkte Machine Learning und Deep Learning
Eine der wesentlichsten Besonderheiten der Deep-Learning Modelle ist, dass sie dazu fähig sind von sich allein aus zu lernen. Dieser Sachverhalt resultiert daraus, dass die zugrundeliegenden Systeme Inhalte eigenständig verknüpfen können und hieraus autark auch durch Algorithmus lernen können. Der Mensch greift hier nicht mehr von außen in den Lernerfolg aktiv ein. Die Maschinen analysieren, anhand von standardisierten Methoden allein. Dieser Sachverhalt stellt auch den deutlichsten Unterschied zum eigentlichen Machine Learning dar. Denn beim Machine Learning greift der Mensch in einer engen Definition noch aktiv in diese Sachverhalte ein.
Machine Learning was ist das und wie lernen Maschinen genau?
Wie funktioniert maschinelles Lernen? Diese Fragestellung ist in Kombination mit dem Deep Learning sowie den verschiedenen Methoden zur Klassifikation je nach genutztem Modell und Beispiel in der Praxis ein Umstand der näher untersucht werden sollte. Grundsätzlich folgt das maschinelle Lernen dem Beispiel des menschlichen Gehirns. Das Gehirn des Menschen ist dazu fähig, binnen Sekunden eine Unmenge an Daten zu verarbeiten und über neuronale Netzwerke zu verteilen. Neue Impulse bzw. Daten werden mit bereits gesammelten und bekannten Daten abgeglichen und konstant verarbeitet. Aus dieser bestehenden Datenbank im Gehirn werden dann Lern- und Entscheidungsprozesse abgehandelt. Die Funktionsweise des maschinellen Lernens findet in ähnlicher Form statt.
Ein Computer benötigt hierfür eine große Menge an Daten. In der Praxis wird diese Datenmenge auch als „Big Data“ bezeichnet. Die Datenmenge garantiert für das Deep Learning eine ausreichende Datengrundlage, um eine Basis für das Handeln und das aktive Lernen am Beispiel zu erhalten.
Autonome Fahrmodelle, die eigenständig arbeiten, gelten für unterschiedliche Arten des maschinellen Lernens als hervorragendes Beispiel, denn hier werden Innovationen wie Radarsysteme, Sensorsystem oder Kamerasysteme in Summe gebündelt und dann genutzt. Die zugrundeliegenden Informationen dieser Techniken werden durch einen zentralen Computer gesammelt. Dieser Computer ist in einen laufenden Aufnahmeprozess integriert, in denen einströmende neue Daten verarbeitet werden, um daraus zu lernen.
Auch das menschliche Gehirn agiert im Denkprozess ähnlich, da es sich kontinuierlich in einem aktiven Lernprozess befindet. Einströmende Daten werden klassifiziert und analysiert. Die Maschine ist hierdurch in der Lage, gemäß einem Algorithmus lernen zu können. Es werden hierfür aktiv Wahrscheinlichkeiten berechnet, um eine belastbare Handlungsentscheidung zu fällen. Maschinen lernen infolgedessen in einer abgewandelten Form, ähnlich wie das menschliche Gehirn lernt und Entscheidungen trifft.
Maschinelles Lernen in der Produktion – Künstliche Intelligenz und ihre Herausforderungen
Viele Unternehmen haben in Deutschland bereits die Notwendigkeit von KI – Technologien erkannt und setzen diese in unterschiedlichen Arten auch zunehmend um, damit eine Wettbewerbsfähigkeit gegenüber dem Wettbewerb vorhanden bleiben kann. Vor allem die typischen KMUs sehen sich jedoch in der Umsetzung der KI – Technologie großen Herausforderungen ausgesetzt. Im Wesentlichen fehlt hierfür das passende Fachpersonal, das Vertrauen in die künstliche Intelligenz als moderne Technologie sowie belastbare Erfahrungen in der Umsetzung. Insbesondere bei Themen der Datensouveränität oder auch der Nutzung abgesicherter Zertifikate bestehen weitere Herausforderungen der KI – Technologie.
KI und Maschinelles lernen weisen aktuell folglich vor allem unternehmerische Eintrittsbarrieren auf, die es zu beseitigen gilt, um auch zukünftig Wettbewerbsfähig zu bleiben.
Eine Einführung von KI-Methoden kann unternehmerisch beispielsweise eine optimale Lagerplatznutzung sowie einen effizienteren Mitteleinsatz bedeuten. Die Künstliche Intelligenz nicht zu beachten, kann folglich langfristig einen enormen Nachteil bedeuten. Wenn Du eine kostenfreie Beratung zu dem Thema was ist maschinelles Lernen genau möchtest, dann nimm Kontakt mit uns auf.
Kontaktformular für kostenlose Kurz-Analyse
In einer 20 bis 30-minütigen Kurzanalyse ermitteln wir, wie ist der aktuelle Stand im Unternehmen. Ziel ist es zu analysieren, ob es Stellen gibt, an denen eine genauere Betrachtung das Unternehmen weiterbringen wird.
Dazu werden Dir Fragen gestellt, die Du offen und ehrlich beantworten sollst. Dann haben wir eine gute Chance genau diese Stellen zu finden.
Und für Dich ist die Kurzanalyse natürlich vollkommen kostenlos und unverbindlich.
Und da der Inhalt streng vertraulich ist, wird keine dritte Person den Inhalt erfahren.
Ist das nicht eine tolle Sache?
Also zögere nicht, sondern Klick!